Все, что необходимо знать перед покупкой проектора. Как выбрать проектор — полное руководство Проектор описание устройства

Устройство проекторов | Введение

Всех нас завораживает волшебный мир кино. Атмосфера кинотеатра позволяет полностью погрузиться в действие и прочувствовать замысел режиссёра, ощутить прилив эмоций и даже в какой-то мере прожить жизнь экранных героев. Разумеется, вряд ли кто-то будет спорить, что одним из основных аспектов столь сильного воздействия является яркое, насыщенное изображение большого формата. И на сегодняшний день такую картинку можно получить лишь при помощи проектора – устройства, которое использует источник света для проецирования кадров на экран. Стоит отметить, что современные проекторы – это весьма высокотехнологичные устройства, однако истоки появления самого принципа формирования такой картинки уходят в глубину веков. Если подойти к вопросу достаточно упрощённо, то первыми зрителями можно считать первобытных людей, которые наблюдали движущиеся тени от огня на сводах пещер. Затем вспоминается знаменитый китайский театр теней, использующий схему, которую мы могли бы назвать сегодня обратной проекцией. А первые массовые устройства возникли лишь в 17 веке. Назывались они "волшебными фонарями", изобретателем которых считают голландского учёного Христиана Гюйгенса. Устройство волшебного фонаря было очень простым: в деревянном или металлическом корпусе был размещён источник света, а изображения для проекции были нарисованы на пластинах из стекла, обрамлённых в рамки. Свет проходил через картинку и оптическую систему, расположенную в передней части аппарата, и попадал на экран.

История волшебного фонаря насчитывает почти три века, и всё это время происходило совершенствование конструкции. Например, для усиления светового потока чуть позже был добавлен рефлектор, а в 19 веке свеча была заменена на электрическую лампу. Кстати, волшебными фонарями часто пользовались бродячие артисты, удивляющие публику невиданным световым зрелищем. Стоит отметить, что такие устройства были распространены и в дореволюционной России, где они применялись в образовательных целях. Более того, диапроектор, любимый нами с детства, является прямым наследником волшебного фонаря. Также нельзя не упомянуть об определяющей роли этого устройства в изобретении кинематографа, с появлением которого волшебный фонарь перестал быть столь популярным, положив, однако, начало всей проекционной технике.

Популярность кино вызвала бурный прогресс оборудования не только для съёмки, но и для воспроизведения, который продолжается до сих пор. Появились специализированные устройства для обучения, такие как оверхед-проекторы , которые до сих пор можно встретить в школах. Им на смену пришли первые модели мультимедийных устройств, которые можно было подключать к различным источникам видеосигнала, а значит – использовать для демонстрации фильмов вне кинотеатров. Дальнейшее развитие технологий позволило организовать просмотр, ничем не уступающий кинотеатральному, в домашних условиях. Идея домашнего кинотеатра покорила энтузиастов и любителей кино и вызвала новый всплеск интереса к индустрии производства фильмов. Помимо этого, массовый спрос на проекторы стал причиной значительного удешевления технологий и разработки по-настоящему доступных моделей. А это, в свою очередь, позволило широко использовать проекционное оборудование и в других областях, таких как образование.

Итак, все современные способы формирования проекционных изображений можно разделить три группы: излучающие, такие как CRT, просветные, такие как LCD, и отражающие, такие как LCoS и DLP. Каждая из них имеет свои особенности, достоинства и недостатки, которые и определяют популярность той или иной системы на рынке.

Устройство проекторов | Основные проекционные технологии

CRT (технология электронно-лучевых трубок)

Несмотря на то, что проекторы , построенные на основе электронно-лучевой трубки, были и остаются достаточно редкими устройствами, для полноценного обзора их упоминание и место в истории современной проекционной техники являются весьма важными. Эти устройства можно с уверенностью назвать прародителями домашних кинотеатров, поскольку они позволяли формировать огромные изображения ещё тогда, когда ни о жидких кристаллах, ни о микрозеркалах ещё никто не слышал. Итак, что же представляет собой CRT-проектор ?

Принцип действия этих устройств знаком каждому, кто помнит старые телевизоры или компьютерные мониторы. Катод, расположенный в основании электронно-лучевой пушки, испускает поток электронов, который разгоняется высоким напряжением. Затем электромагнитная отклоняющая система фокусирует пучок и изменяет направление движения заряженных частиц, в результате чего они бомбардируют внутреннюю поверхность стеклянного экрана, покрытого люминофором, который начинает светиться под действием электронов. Таким образом, электронный луч, прочерчивая каждый кадр строка за строкой, и формирует картинку на экране. Однако, поскольку в подобных устройствах применяются монохромные вакуумные элементы, для получения полноценного цветного изображения одного кинескопа недостаточно. Поэтому в CRT-проекторах устанавливаются три трубки, которые отвечают за формирование базовых цветов: красного, зелёного и синего. Кстати, поскольку от таких устройств всегда требуется большой световой поток, диагональ экрана каждого кинескопа может составлять до 9 дюймов. Далее все три изображения при помощи массивных объективов и различных аналоговых систем коррекции искажений сводятся в единое целое на экране.

Схема технологии CRT

Что касается качества изображения, то даже по нынешним временам его можно назвать замечательным. Во-первых, это отличная цветопередача. Во-вторых, способность воспроизводить низкий уровень чёрного, и, как следствие, демонстрировать картинку с высокой контрастностью. И, в-третьих, возможность воспроизведения практически любого входного разрешения сигнала. Кроме того, такие проекторы могут изменять геометрию картинки, оставляя постоянным количество элементов изображения. Правда, стоит отметить, что такие возможности требуются только в специальных задачах, таких, как, например, совмещение нескольких изображений в авиатренажёрах.

CRT-проекторы – весьма тихие, поскольку в них практически не используются активные системы охлаждения. И при этом они могут непрерывно работать в течение сотен часов, хотя, опять же, такое преимущество для обычного домашнего кинотеатра практически не требуется. Также стоит отметить, что подобная технология проецирования изображения более чем испытана временем, ведь её история насчитывает около пятидесяти лет, а, значит, все возможные сложности производства и эксплуатации были давно уже преодолены. Кстати, такие устройства выпускаются до сих пор.

К сожалению, несмотря на все усилия, яркость демонстрируемого изображения нельзя назвать рекордной. Кроме того, такие проекторы не очень подходят для формирования статических изображений, поскольку люминофор, покрывающий внутреннюю поверхность кинескопа, имеет тенденцию выгорать со временем, а неподвижные картинки, формируемые в течение длительного времени, оставляют фантомные следы, достаточно заметные на других изображениях. Также стоит отметить, что довольно сложная система совмещения трёх базовых сигналов требует периодической калибровки, для проведения которой необходим специалист высокого класса.

Учитывая, что современные технологии воспроизведения изображений больших форматов, подгоняемые модой на объёмную картинку и внеднением стандартов сверхвысокой чёткости развиваются с огромной скоростью, CRT-проекторы на фоне нынешних моделей выглядят эдакими динозаврами: такие же огромные, тяжёлые и устаревшие.

LCD (жидкокристаллическая просветная технология)

С этим способом воспроизведения изображения связана уже современная эра проекционных устройств. Стоит отметить, что формула "новое – это хорошо забытое старое" полностью применима к данному случаю. Как утверждает история, первые попытки создания жидкокристаллических проекторов относятся к началу восьмидесятых годов прошлого века. Фактически идея заключалась в том, чтобы заменить движущуюся плёнку и затвор в кинопроекторе на LCD-матрицу, демонстрирующую видеоряд. И уже к середине десятилетия появились первые коммерческие образцы. Разумеется, эти устройства были не лишены недостатков – типичные показатели: 9 килограммов веса при световом потоке не более 300 люмен, низком разрешении и заметной сетке пикселов – однако они послужили отправной точкой развития доступных средств воспроизведения картинки большого формата и, как следствие, целого направления массовых домашних кинотеатров.

Итак, каким образом работает ЖК-проектор ? В основе функционирования лежит свойство молекул жидкокристаллического вещества менять пространственную ориентацию под воздействием электрического поля. Однако гораздо более важен тот факт, что проходящий через ячейку свет может менять направление плоскости поляризации. Более того, управляя приложенным напряжением, можно изменять это самое направление. Но что это даёт для формирования картинки? Всё очень просто: если добавить до и после ячейки поляризационные фильтры, плоскости поляризации которых взаимно перпендикулярны, можно управлять прозрачностью любого элемента изображения. Разумеется, подобное представление принципа работы достаточно упрощено, однако когда-то всё работало именно так. А теперь добавьте управляющие транзисторы, проводники, дополнительные пиксели для каждого цветового канала, соответствующие цветофильтры – и получите цветную жидкокристаллическую панель.

Итак, у нас есть массив точек, расположенный на стеклянной подложке (для того, чтобы свет мог свободно проходить через матрицу), прозрачностью которых мы можем управлять. Но это еще не проектор : нам потребуется мощная лампа, система охлаждения, управляющая электроника, блок питания, объектив для проецирования изображения и корпус. На первый взгляд, всё довольно просто, однако применение одной матрицы практически сразу же выявило несколько серьёзных недостатков: перегрев LCD-панели, невысокая контрастность и общее ухудшение качеств поляризующих плёнок под действием высоких температур. Поскольку потенциал новой технологии был весьма высок, то дальнейшее её развитие привело к появлению в 1988 году схемы с тремя матрицами, которая получила название 3LCD.

Это конструктивное решение оказалось настолько популярным, что используется в проекторах до сих пор. В чем же его особенность? В том, что, как нетрудно догадаться из названия, в формировании изображения участвуют сразу три матрицы. Итак, свет от источника (как правило, это газоразрядная лампа) попадает на систему дихроичных зеркал, которые установлены в оптическом блоке. Их задача – пропускать свет определенного спектра и отражать всё остальное. Таким образом, белый свет разделяется на три потока, которые формируют базовые цвета изображения: красный, зелёный и синий. Каждый луч проходит через свою монохромную матрицу, формирующую картинку соответствующего цвета, а затем все три составляющие совмещаются при помощи специальной призмы. Полученное изображение проецируется через объектив на экран.


Схема технологии 3LCD

Дальнейший прогресс технологии, который позволил разместить все три матрицы вплотную к призме, что, в свою очередь повысило точность сведения трёх изображений. Кроме того, внедрение полисиликоновой технологии помогло не только повысить сопротивление ЖК-панели тепловому нагреву, но и заметно уменьшить размеры проводников и управляющих транзисторов. Таким образом, значительно повысилась световая эффективность матриц и появилась возможность дополнительного увеличения их разрешения. В современных проекторах также применяется микролинзовые растровые панели, которые направляют световой поток через прозрачную область и тем самым дают дополнительный выигрыш по яркости. Стоит отметить, что технологический процесс продолжает совершенствоваться до сих пор, поскольку предел возможностей пока не достигнут.

Итак, основными достоинствами технологии формирования изображения на основе трёх ЖК-матриц можно назвать высокую яркость картинки, небольшой вес конструкции, легкую настройку и эксплуатацию, а также возможность проецирования изображений очень больших форматов. Что касается недостатков, то к ним обычно относят большое расстояние между пикселями, которое является следствием необходимости размещать между ячейками проводники и управляющие транзисторы. Это приводит к эффекту сетчатости изображения, однако, учитывая перпективы внедрения разрешений, превышающих Full HD при сохранении размера диагонали экрана, подобный вопрос исчезнет уже в ближайшем будущем. Другой серьёзный недостаток, присущий ЖК-проекторам , - это довольно высокий уровень чёрного, и, как следствие, низкая контрастность, однако справедливости ради стоит отметить, что современные решения на основе IPS-матриц демонстрируют уже весьма впечатляющие результаты. Кроме того, недостаточное быстродействие LCD-панелей тоже давно уже не стоит на пути к качественному изображению. А вот шум по-прежнему является актуальным недостатком. Дело в том, что в этих проекторах применяются мощные газоразрядные лампы, нуждающиеся в серьёзной системе охлаждения, в которой применяются вентиляторы, что приводит к повышенному уровню шума. Также стоит отметить, что срок службы лампы составляет от 2000 до 4000 часов, после чего происходит снижение яркости в два раза, а, значит, при интенсивном использовании придётся периодически её менять, что связано с заметными финансовыми вложениями. Кроме того, сами матрицы тоже имеют тенденцию к изменению своих свойств с течением времени.

Кстати, тот самый первый и простой вариант проекционной технологии, когда используются одна ЖК-панель и источник света, послужил основой для множества самодельных конструкций. В Интернете и сейчас есть множество инструкций по самостоятельному изготовлению проекционного устройства при помощи матрицы монитора и проектора для лекций.

LCoS (жидкокристаллическая отражающая технология)

Ближайшим родственником принципа формирования изображения 3LCD является LCoS-технология, которая расшифровывается как Liquid Crystal on Silicon – "Жидкий Кристалл на Кремнии". Итак, в чём же суть? Если говорить совсем просто, то световой поток модулируется жидкокристаллической матрицей, которая работает не на просвет, а на отражение. Как это реализовано на практике? На подложке располагается управляющий полупроводниковый слой, покрытый отражающей поверхностью, а над этим "сэндвичем" находятся матрица из ячеек с жидкими кристаллами, защитное стекло и поляризатор. Свет от источника попадает на поляризатор, поляризуется и проходит через жидкокристаллическую ячейку. На полупроводниковый слой подаётся сигнал, который позволяет управлять плоскостью поляризации входящего света путём изменения пространственной ориентации жидкого кристалла. Таким образом, ячейка становится в той или иной степени прозрачной, позволяя регулировать количество света, которое проходит к отражающему слою и обратно.

На основе этого принципа формирования изображения было разработано несколько коммерческих технологий, причём каждая из них была запатентована. Одни из самых известных – это SXRD от компании Sony и D-ILA от JVC. Кстати, стоит отметить, что несмотря на то, что обе из них активно используются и по сей день, точкой отсчёта следует считать далёкий 1972 год, когда был изобретён жидкокристаллический оптический модулятор. Технологией заинтересовались военные, и несколько лет спустя уже все командные центры ВМФ США были оснащены на основе этих устройств. Разумеется, это были полностью аналоговые аппараты и, кстати, в качестве источника изображения в них выступали электронно-лучевые трубки. Не стоит и говорить, что те были непомерно сложны и дороги. Уже в наше время коммерческой разработкой и усовершенствованием принципа модуляции отражённого света занялась компания JVC, которая представила первый на основе технологии D-ILA в 1998 году. Итак, как же устроен такой аппарат?

В настоящее время в основном используются решения на основе трёх матриц, однако справедливости ради стоит сказать, что существуют и одночиповые LCoS- . Обычно используются две схемы. В первом случае источником света выступают три мощных светодиода красного, зелёного и синего цветов, которые переключаются последовательно и с высокой скоростью, а на отражающей матрице синхронно формируются кадры для каждого потока. Во втором случае белый свет от лампы разделяется на составляющие непосредственно на матрице при помощи специального фильтра, а сам массив ячеек формирует уже полноцветное изображение. Подобные не получили широкого распространения либо по причине невысокого светового потока, либо по причине сложности производства. Поэтому, как и в случае с просветными жидкокристаллическими панелями, наиболее успешной стала схема с тремя LCoS-матрицами.

Итак, свет от источника при помощи системы дихроичных и простых зеркал разделяется на три световых потока, соответствующих красному, зелёному и синему цвету. Далее каждый из них попадает на свою призму-поляризатор (PBS). Затем потоки направляются на отражающие матрицы, модулируются, формируя цветовые компоненты для базовых каналов изображения, проходят обратно через PBS-элементы и сводятся вместе в дихроичной призме. Полученная картинка проецируется через объектив на экран.


Схема технологии D-ILA

Достоинствами этой технологии можно с уверенностью назвать замечательное качество изображения, высокую яркость и контрастность картинки, а также возможность проецирования изображений очень больших форматов. Также стоит отметить, что особенности производства отражающих матриц позволяют располагать управляющие проводники и электронику за отражающим слоем, значит, площадь покрытия пикселей гораздо больше. Иными словами, изображение выглядит гораздо более однородным, чем в случае с просветными панелями. Кроме того, управление массивом точек в компании JVC реализовано при помощи аналоговых сигналов, что позволяет получить более плавные градиенты. А технология производства, помимо всего прочего, позволяет создавать матрицы с очень высоким разрешением, что, безусловно, будет очень актуальным в свете внедрения стандартов изображения 4K.

Что касается недостатков, то в первую очередь стоит упомянуть весьма высокую цену. Позволить такой могут себе лишь весьма обеспеченные энтузиасты домашнего кинотеатра. Кроме того, такие устройства нельзя назвать компактными и лёгкими, поэтому использовать их в мобильных презентациях вряд ли получится. Их удел – большие и средние залы кинотеатров. Поскольку в этих устройствах используются такие же газоразрядные лампы, как и в просветных жидкокристаллических , все недостатки, связанные с их использованием, присутствуют здесь в полной мере. Напомним, это, в первую очередь, шум активных охлаждающих систем, а также ограниченный срок службы лампы, замена которой обойдётся в значительную сумму.

DLP (микрозеркальная технология)

Третьим, и наиболее активным игроком на рынке современных проекционных устройств, можно с уверенностью назвать DPL-технологию, которая также работает по отражающему принципу. Её название – это аббревиатура от Digital Light Processing, что можно перевести как "Цифровая Обработка Света". В основе этой технологии лежит специальная микроэлектромеханическая система, которая представляет собой крошечное зеркало, за положение которого отвечает столь же миниатюрная механика, управляемая при помощи электрических сигналов. Зеркало может находиться в двух положениях. В первом случае оно отражает свет, который после прохождения всего тракта формирует точку на экране. Во втором положении свет попадает на специальное светопоглощающее устройство. Стоит отметить, что благодаря очень маленькому размеру зеркало может переключаться между двумя состояниями очень быстро. Поскольку принцип работы и управления схож с бинарным (света нет – логический ноль, свет есть – логическая единица), то устройства такого типа считаются цифровыми.

Для того чтобы формировать изображение, понадобится целый массив таких микрозеркал вместе с управляющей механикой, поэтому инженеры разработали специальный микрочип, выполненный по микроэлектронной технологии, который называется DMD или Digital Micro Device – "Цифровое Микро Устройство".

Стоит отметить, что эта технология была разработана компанией Texas Instrumens ещё в 1987 году, и по сей день DMD-матрицы выпускаются только этой фирмой. Кстати, первый коммерческий образец проекционного устройства на основе DLP был представлен лишь в 1996 году. Так как же устроены подобные ?

Существуют две основные схемы, представленные на рынке: одночиповая и трёхчиповая. Первая – более дешевая и, соответственно, более популярная, а вторая – более дорогая и менее распространённая.

Итак, схема с одним DMD-чипом работает следующим образом. Свет от источника проходит через быстро вращающееся прозрачное колесо, которое разделено на несколько цветных сегментов. В первом приближении это красный, зелёный и синий цвета. Далее окрашенный световой пучок проецируется на DMD-чип, строго синхронизированный с диском, на котором микрозеркала уже сформировали кадр для данного цвета. Отражённый поток проецируется через объектив на экран. Поскольку, как уже упоминалось, для каждого микрозеркала возможно только одно из двух положений, то оттенки цветов формируются за свет времени, которое каждое микрозеркало проводит в состоянии отражения. А всё остальное делает наше сознание и инерционность зрения, поэтому на экране мы видим не отдельные цвета, а плавно изменяющееся изображение.


Схема одночиповой технологии DLP

Основными достоинствами такой схемы на сегодняшний день являются высокая яркость и отличная контрастность изображения. За счёт конструкции DMD-чипов DLP-устройства также отличаются невиданным временем отклика. Поскольку здесь работает принцип отражения, то эффективность использования светового потока в таких очень высока, а, значит, для получения необходимых значений яркости требуются лампы меньшей мощности. В связи с этим сокращается энергопотребление, а также шум активной системы охлаждения. Стоит также отметить, что DMD-чипы сохраняют свои первоначальные характеристики с течением времени. Кроме того, благодаря простоте конструкции такие устройства, как правило, отличаются относительно невысокой ценой и компактностью габаритов. По однородности изображения и заметности пикселей на экране DLP-технология находится как раз между 3LCD и LCoS.

Что касается недостатков, то они тоже достаточно весомые. В первых моделях цветовое колесо вращалось со скоростью до 3600 оборотов в минуту, поэтому скорость вывода отдельных изображений на экран, с одной стороны, была весьма высокой, а с другой - всё же недостаточной. Из-за этого зритель периодически мог наблюдать так называемый "эффект радуги". Его суть состоит в том, что если на экране отображался яркий объект на тёмном фоне, а взгляд быстро переводился с одного края кадра на другой, то этот яркий объект распадался на красные, синие и зелёные "фантомы". Причём в фильмах таких сцен хватало, и дискомфорт от просмотра также был ощутимым.

Для уменьшения его влияния разработчики начали раскручивать цветовое колесо и увеличивать количество сегментов на диске. Сначала были всё те же красные, зелёные и синие сегменты, но их стало шесть, и располагались они уже друг напротив друга. Таким образом частота выводимых кадров удваивалась, и "эффект радуги" становился менее заметным. Были варианты с добавлением сегментов промежуточных цветов, однако результат был практически таким же – менее заметно, но всё же присутствует. Кстати, отдельно стоит упомянуть проблему цвета и яркости в DLP- . Трёхсегментное колесо позволяло получить хорошую цветопередачу, но всё же снижало яркость, поэтому к нему начали добавлять ничем не окрашенный участок. Это позволило увеличить световой поток, но привело к выбеленным цветам с малым количеством градаций. Тогда Texas Instruments создала технологию Brilliant Color (с тем самым шестисегментным диском с дополнительными промежуточными цветами), которая и помогла исправить положение. В настоящий момент на рынке присутствуют модели с количеством отдельных сегментов на цветовом колесе, достигающим семи.

Справедливости ради стоит сказать, что существуют и двухчиповые DLP- , которые также используют цветовое колесо для разделения света на две составляющие, которые представляют собой смеси красного с зелёным и красного с синим цветов. При помощи системы призм происходит выделение красной составляющей, которая направляется на один из микрозеркальных массивов. Зелёная и синяя компоненты попеременно проецируются на другой чип. Далее две DMD-матрицы модулируют соответствующие лучи, таким образом кадр красного цвета проецируется на экран постоянно, что позволяет компенсировать недостаточную интенсивность соответствующей части спектра излучения лампы. Стоит отметить, что при увеличении стоимости (за счёт использования двух микрозеркальных чипов), подобная схема полностью не решала проблему "эффекта радуги", и широкого распространения не получила. Поэтому производителям не оставалось ничего другого, кроме использования конструкции с тремя микрозеркальными чипами.

В трёхматричных световой поток от источника света разделяется на три составляющих при помощи массива специальных призм. Затем каждый луч направляется на соответствующую микрозеркальную панель, модулируется и возвращается в призму, где происходит совмещение с другими цветовыми компонентами. Далее готовое полноцветное изображение проецируется на экран.


Схема трёхчиповой технологии DLP

Достоинства такой схемы очевидны: высокая яркость и контрастность, низкое время отклика, отсутствие "эффекта радуги", что означает комфорт при просмотре. Опять же, высокая эффективность использования светового потока в таких позволяет применять лампы меньшей мощности, что, в свою очередь, снижает энергопотребление и шум активной системы охлаждения.

Основной недостаток тоже вполне очевиден: это цена. Стоимость одного DMD-чипа в отдельности весьма высока, а уж трёх – и подавно, поэтому трёхматричные модели в основном обслуживают средний сегмент домашних кинотеатров. Вторая трудность состоит в том, что из-за особенностей конструкции оптического тракта в DLP- крайне непросто сделать механический сдвиг линз, поэтому его можно встретить лишь в дорогих моделях.

Возвращаясь к одночиповой схеме, стоит отметить, что современное развитие оптических полупроводниковых технологий и появление светодиодов и лазеров синего и зелёного цветов позволило разработать модели, в которых отсутствует "эффект радуги". Самым простым вариантом стала замена газоразрядной лампы на три мощных светодиода основных цветов. Источники света могут включаться и выключаться очень быстро, поэтому такая схема позволила отказаться ещё и от цветового колеса, а также ещё больше увеличить скорость смены цветных кадров. Кроме того, удалось очень сильно уменьшить энергопотребление и габариты устройства, в том числе и за счёт более простой системы охлаждения. А меньшее тепловыделение так же положительно сказывается на работе всей электроники. Первый такой появился в 2005 году и весил менее полукилограмма, при этом его светового потока было достаточно для проецирования изображения с диагональю 60 дюймов.


Схема светодиодной технологии DLP

Следующим шагом стало использование в качестве источника света полупроводниковых лазеров. Дело в том, что применение таких источников считается весьма перспективным, благодаря отличным цветовым, временным и энергетическим характеристикам. Кроме того, свет, испускаемый лазерами, имеет ещё и круговую поляризацию, которую можно достаточно просто преобразовать в линейную и таким образом упростить конструкцию . Итак, источники когерентного излучения с длинами волн, соответствующими красному, зелёному и синему цвету, поочередно поступают на специальные дифракционные формирователи, которые обеспечивают равномерность света по всему сечению пучка. Затем, после совмещения системой дихроичных зеркал, каждый цветовой компонент проходит через оптический преобразователь, который превращает тонкий луч в широкий световой поток. Массив микрозеркал модулирует падающий свет, и полученное изображение соответствующего цвета проецируется на экран.


Схема лазерной технологии DLP

Самым значительным улучшением таких схем можно считать отсутствие эффекта радуги, а также замечательные результаты по цветопередаче, яркости и контрастности. Применение полупроводниковых светодиодов и лазеров в качестве источника света в позволило не только заметно снизить энергопотребление, но ещё и значительно увеличить ресурс . Производители заявляют о среднем времени наработки на отказ от 10000 до 20000 часов. Кроме того, яркость источника остаётся постоянной в течение всего времени эксплуатации. Правда, доступны подобные устройства пока далеко не всем: цена инновационного продукта по-прежнему на весьма высоком уровне.

Добавим, что на рынке можно встретить модели, которые используют в качестве источника света одновременно и лазеры, и светодиоды. Если быть совсем точными, то лазер всего один – синего цвета, который, однако, отвечает за зелёную составляющую. Как такое возможно? Дело в том, что синий лазер светит на специальную пластину, покрытую люминофором, которая начинает светиться зелёным светом. Красную и синюю составляющие изображения формируют соответствующие светодиоды. Ну а дальше всё как обычно: свет с различной длиной волны попадает поочередно на DMD-чип, а затем выводится на экран.

Кроме того, у этой схемы есть вариации с цветовым колесом, но не просветным, а покрытым люминофором. В первом случае красный цвет формирует светодиод, а зелёный и синий – голубой лазер, который направлен на вращающийся диск с двумя видами люминофора, которые поочередно светятся синим и зелёным светом. Во втором варианте красный светодиод отсутствует, а все три цвета формируются лазером и цветовым колесом с тремя разными люминофорами. Дело в том, что люминофор позволяет избежать так называемого пятнистого шума, а применение лазера – достичь очень насыщенных оттенков.

LDT (лазерная технология)

В предыдущих разделах мы рассмотрели наиболее популярные в настоящее время технологии, широко представленные на рынке. Теперь настала пора познакомиться с совсем уж экзотическим способом формирования изображения.

В главе про DLP- мы рассмотрели применение полупроводниковых лазеров в качестве источника света. А что, если сами лазерные лучи будут формировать изображение непосредственно на экране? Этот вопрос волнует человечество уже не первое десятилетие, однако ответ на него был получен в 1991 году, после того, как была изобретена технология LDT или Laser Display Technology, что переводится как "Технология Лазерного Отображения". Рабочий прототип был представлен в 1997 году, а серийный – в 1999 году. Итак, чем же примечателен физический принцип, основанный на применении лазеров?

Прежде чем ответить на этот вопрос, стоит понять, зачем вообще понадобилось разрабатывать такую технологию. Дело в том, что проекционные устройства 90-х годов прошлого века были недостаточно хороши для воспроизведения очень ярких и при этом очень контрастных изображений с высоким разрешением. Лазеры в силу своих физических особенностей могли исправить положение.

Стоит отметить, что попытки использования когерентных источников света для формирования изображения предпринимались достаточно давно, с 60-х годов. Причём первоначальная идея заключалась в том, чтобы заменить в электронно-лучевой трубке пучок электронов на лазерный луч. В этом случае конструкция значительно упрощалась, а цветопередача улучшалась. Однако в то время оказалось невозможным преодолеть некоторые технические трудности, такие, как создание лазеров, работающих при комнатной температуре, а также системы отклонения луча. Кстати, подобные работы велись и в СССР. Развитие полупроводниковых и микроэлектронных технологий позволило преодолеть вышеуказанные трудности и создать LDT- , однако до массового внедрения таких устройств по-прежнему очень далеко.

Итак, как работает технология LDT? Система построена на использовании трёх лазеров базовых цветов, которые модулируются по амплитуде особыми электрооптическими устройствами. При помощи специальной системы полупрозрачных зеркал лучи объединяются в один световой поток, который пока ещё не является полноценной цветной картинкой. Далее сигнал по оптическому кабелю поступает на оптико-механическую систему развёртки изображения. Кадр строится по тому же принципу, что и в телевизоре, – по строкам: слева направо и сверху вниз. Развёртка изображения по одной оси осуществляется при помощи специального вращающегося барабана с двадцатью пятью специальными зеркалами, а по другой – путём отклонения луча качающимся отражателем. Стоит отметить, что лазер способен описывать на экране 48000 строк или 50 кадров в секунду, а скорость перемещения точки на экране достигает 90 км/с! Такая скорость для нашего довольно инерционного восприятия, разумеется, очень велика, что и позволяет видеть на экране плавно меняющееся изображение. После развёртки световой сигнал поступает на систему фокусировки, которая объединена с отклоняющими устройствами в проекционную головку. Кстати, одной из особенностей системы является то, что источник света может быть удалён от проецирующего устройства на расстояние около 30 метров, что, в свою очередь, означает возможность применения очень мощных лазеров, требующих специальных систем охлаждения, а, значит, – получения изображения огромной яркости.


Схема лазерной технологии LDT

Какими преимуществами обладает подобный принцип формирования проекции? Во-первых, как уже было сказано, это огромная яркость изображения, и, как следствие, возможность проецировать картинку площадью в несколько сотен квадратных метров. Кроме того, её можно проецировать не просто на плоскость, а вообще на всё, что угодно, – и изображение будет оставаться резким в каждой точке! А всё благодаря лазерам: именно они позволяют избавиться от сложной системы сведения и фокусировки лучей. Более того, все остальные преимущества также обусловлены физической природой когерентного излучения. Например, лазеры очень слабо рассеиваются, поэтому создаваемое изображение имеет очень высокую контрастность, в четыре раза превышающую возможности человеческого зрения! Кроме того, поскольку лазеры обладают высокой монохроматичностью, то картинка ещё и обладает расширенным цветовым охватом и высокой насыщенностью. Помимо этого, время работы источников излучения – десятки тысяч часов, поэтому никакие традиционные газоразрядные лампы не в состоянии полноценно конкурировать с ними. То же самое можно сказать и про энергопотребление.

Технология LDT ещё очень молода и не лишена некоторых недостатков. Например, всё та же цветопередача. Для окраски каждого луча применяются специальные кристаллы, которые меняют длину волны, поэтому добиться точного соответствия совсем не просто. Разработчики занимаются этим вопросом, но пока он достаточно актуален. Размеры устройства совсем не маленькие, поэтому мобильность такого под силу только специальной бригаде. Ну и, пожалуй, главный недостаток технологии – это огромная цена, что в принципе неудивительно, поскольку этот продукт ещё очень далек до звания массового. Поэтому в настоящее время технология LDT может заинтересовать лишь крупные компании, которые специализируются на концертной деятельности, крупных световых шоу, а также инсталляциях для серьёзных конференций.

Устройство проекторов | Технологии формирования трёхмерного изображения

Интерес к проецированию объёмной картинки занимает человечество практически со времен изобретения кинематографа. Вариантов реализации было предложено множество, но базовый принцип всегда оставался неизменным: для каждого глаза должно быть сформировано своё изображение.

Современный интерес к объёмной картинке возник после выхода на экраны в 2009 году фильма Джеймса Кэмерона "Аватар". Мир планеты Пандора, показанный в картине в стереоскопическом формате, был столь реалистичен, что новая волна моды на трёхмерное изображение не заставила себя ждать. К тому времени уже был неотъемлемой частью полноценного домашнего кинотеатра, поэтому производители оборудования постарались как можно оперативнее внедрить новую технологию не только в телевизоры, но и в проекционные устройства.

К сожалению, разработчикам не удалось договориться о некоем едином формате, поэтому в настоящий момент на рынке главенствуют две основные технологии: поляризационная и затворная. Первая основана на разделении картинок при помощи поляризаторов. Вначале коммерческое воплощение этой идеи использовало линейную поляризацию, причём плоскости направления волн для каждого глаза были взаимно перпендикулярны. На практике всё было реализовано следующим образом. При помощи двух на экран проецируются два изображения, поляризованные для каждого глаза, специальные очки разделяют картинки, и зритель воспринимает объекты на экране как объёмные. Недостатков у такого способа формирования было несколько: необходимость использования двух , а также специального экрана, который имел повышенную отражающую способность и не менял направление поляризации. Кроме того, зрителю всегда приходилось держать голову прямо для того, чтобы эффект трёхмерности не пропадал. Следующим шагом в развитии этой технологии была замена линейной поляризации на круговую, а также проецирование кадров для каждогоглаза попеременно при помощи только одного устройства. Такой подход позволил держать голову во время просмотра произвольно, однако привёл к потере половины светового потока. Поляризационная технология при всех своих достоинствах практически не используется в домашних кинотеатрах, а применяется в основном в профессиональной сфере.

Второй вариант получения трёхмерного изображения основан на разделении кадров для каждого глаза при помощи специальных очков. демонстрирует попеременно изображения для каждого глаза, при этом частота смены кадров может достигать 120 Гц. Вместо линз в активных очках применяются специальные ЖК-матрицы, которые синхронизированы с и перекрывают световой поток таким образом, что каждый глаз видит только предназначенные для него изображения. Поскольку, как мы уже говорили, наше восприятие достаточно инерционно, потоки вопринимаются непрерывно и складываются в единую трёхмерную картинку. Именно эта технология в настоящее время наиболее активно применяется в домашнем кинотеатре, правда, справедливости ради стоит отметить, что и в профессиональной среде она тоже достаточно популярна.

Итак, процесс получения объёмного изображения понятен, осталось разобраться, какие позволяют воспроизводить такую картинку. На современном этапе развития проекционных технологий получение трёхмерного изображения удалось реализовать на основе LCD, DLP и LCoS-систем. Правда, учитывая, что затворный способ используется в домашнем кинотеатре совсем недавно, разработчикам ещё предстоит решить много вопросов. Например, быстродействие ЖК-матриц пока не в полной мере отвечает запросам по скорости обновления и отклика.

Устройство проекторов | Выводы и перспективы

Итак, мы познакомились с основными проекционными технологиями формирования изображения кинотеатрального формата, а также рассмотрели их особенности, достоинства и недостатки. Ещё десять лет назад были весьма экзотическими средствами отображения, которые только начинали массовое наступление на сферу домашнего применения. За эти годы качество изображения достигло очень высокого уровня, многие технологические недостатки ранних моделей преодолены, а разноообразие устройств позволяет подобрать на свой вкус за весьма приемлемые деньги. Даже внезапно возникшая мода на трёхмерное изображение тут же нашла отражение в выпускаемых моделях.

На сегодняшний день ситуация выглядит следующим образом. Наиболее распространённой технологией можно с уверенностью считать DLP. , построенные на микрозеркальных панелях, встречаются как в недорогом сегменте, так и в среднем. Кроме того, эта технология является ещё и весьма перспективной, причём по нескольким причинам. Во-первых, внедрение светодиодных и лазерных источников света поможет создать массовые проекционные устройства, которые будут весьма миниатюрными и низкопотребляющими, с большим световым потоком, отличной контрастностью, замечательным цветовым охватом и большим сроком службы. А, во-вторых, высокое быстродействие таких панелей создает великолепные возможности для внедрения высокоскоростных способов формирования трёхмерного изображения.

Самым ближайшим конкурентом DLP является технология 3LCD. Несмотря на то, что эта схема не нова, она по-прежнему весьма популярна и в недорогих , и в устройствах средней ценовой категории. Более того, несмотря на заложенные ограничения, например, по контрасту и по размеру расстояния между пикселями, каждое новое поколение матриц не перестает удивлять отличными результатами. Так что на сегодняшний день технологический предел возможностей этого способа формирования изображения ещё не достигнут.

Технология жидких кристаллов на кремнии на сегодняшний день является одной из самых качественных по параметрам картинки, однако и одной из самых дорогих, поэтому такие используются только в домашних кинотеатрах высшего уровня. Тем не менее, такие модели становятся доступнее с каждым годом и даже появляются в среднем ценовом сегменте, однако по этому параметру им до DLP- и LCD- пока очень далеко.

Периодически возникает вопрос возможного влияния проецируемого изображения на здоровье человека. Считается, что картинка, формируемая при помощи технологий 3LCD и LCoS, не имеет каких-либо отрицательных аспектов, поскольку транслируется на экран в сведённом виде, в то время как DLP с одним микрозеркальным чипом последовательно формирует три разноцветных изображения с высокой скоростью. Кстати, некоторые исследования показывают, что частоты смены кадров 180 Гц недостаточно для полного исключения "эффекта радуги" и связанной с ним утомляемости зрения во время длительного просмотра.

Что касается перспектив развития проекционно техники, то очень большие надежды связаны с внедрением полупроводниковых источников света, таких как светодиоды и лазеры, причём не только в сфере домашнего кинотеатра, но и в области профессиональной техники для концертов и световых шоу. Мы уже рассказывали о преимуществах, которые даёт эта технология, поэтому тоит сказать пару слов о возможных последствиях. Пока что способ формирования картинки при помощи лазерных лучей не только весьма перспективен, но и очень молод, а, значит, нет практически никаких данных о возможном влиянии на здоровье человека. Тем не менее, давно известно, что лазерный луч мощностью излучения в 1 мВт может быть опасен для зрения, а, значит, при использовании такой техники должно быть полностью исключена возможность попадания прямого светового потока на зрителей. В общем, вопрос безопасности еще предстоит исследовать.

Возможно, в ближайшем будущем все усилия производителей проекционной техники могут оказаться напрасными, поскольку, как это ни парадоксально, основным конкурентом на рынке домашнего кинотеатра может стать OLED-технология. Судите сами: уже сегодня никого не удивишь ЖК-телевизорами с диагональю 1,5 метра, а модели-рекордсмены и вовсе демонстрируют картинку более 2,7 метров, при том, что средние размеры изображения в домашнем кинотеатре как раз и составляют около 3-4 метров по диагонали. Уже сейчас есть коммерческие образцы моделей OLED-телевизоров на основе гибких подложек, которые позволяют производить не только плоские, но даже вогнутые экраны. А это, в свою очередь, рисует перед нами весьма заманчивые перспективы: возможно, в будущем нам больше не понадобятся ни , ни экраны. Для того чтобы погрузиться в действие фильма, достаточно будет нажать на кнопку электропривода и огромное гибкое полотно, покрытое органическими светодиодами, плавно появится из настенной ниши. Останется только включить кино и наслаждаться изображением.

Что такое видеопроектор ? Это устройство, напрямую подключаемое к компьютеру или источнику видеосигнала (видеомагнитофону, видеокамере и т.д.) вместо компьютерного монитора (монитор компьютера подключается к выходу проектора) или телевизора для проецирования изображения на большой экран. Под видеопроектором (проектором) мы подразумеваем LCD-проектор.

Современный видеопроектор отличается компактностью, небольшим весом, не боится перевозок, тряски, всегда готов к работе. Для работы проектора не требуется никаких специальных программ, работа с ним чем-то напоминает работу с монитором компьютера также есть регулировки яркости и контрастности, сдвига изображения влево и вправо. Проекторы не нуждаются в сложной и частой регулировке, они имеют всего несколько кнопок и удобное экранное меню. Проектор можно включить и работать с ним, даже не читая инструкции (хотя мы рекомендуем все же заглянуть в инструкцию). Внутри проектора находится мощный источник света и преобразователь входного сигнала в изображение. В зависимости от конструкции этого преобразователя, проекторы делятся на однопанельные и трехпанельные. В однопанельных используется одна LCD-панель, и принцип работы такого проектора аналогичен комбинации из оверхед-проектора и LCD-панели. В трехпанельных проекторах излучение от лампы расщепляется на три первичных цвета (красный, зеленый, синий) с помощью дихроичных зеркал, затем каждый пучок света проходит через свою LCD-панель. Далее пучки объединяются внутри проектора, и с помощью объектива формируется изображение на экране. Трехпанельная схема дороже однопанельной, но обеспечивает более естественную передачу цветов и более высокие световые потоки.

Характеристики видеопроектора. Входы видеосигнала, световой поток и другие...

Как правило, видеопроектор имеет более двух входов один или два входа для компьютерного видеосигнала и один-два для обычного видео. К проектору можно подключить компьютер, видеомагнитофон и камкодер одновременно. Для более качественного воспроизведения имеются S-видео входы. В проекторах имеются также аудио входы для подключения к компьютеру и видеомагнитофону — проекторы оборудованы усилителем и динамиками, громкости которых достаточно для среднего помещения. Большинство из продающихся в России видеопроекторов мультисистемны и работают со всеми стандартами (PAL/SECAM/NTSC). Это значит, что вы можете показывать любую телевизионную программу, воспроизводить записи с видеокассет и лазерных дисков. Специально выпускаемые видеосканеры могут преобразовывать изображение со слайдов, фотографий, рисунков, объемных предметов в видеосигнал для последующего показа с помощью проектора, так что в ближайшем будущем оверхед-проекторы, слайдпроекторы и эпископы будут вытеснены с рынка. Яркость и разрешение изображения самые важные свойства оборудования для презентаций. Говоря о яркости проекторов, мы будем подразумевать световой поток проектора, то есть количество света, испускаемое проектором. Световой поток не зависит ни от размера экрана, ни от расстояния от экрана до проектора и измеряется в люменах (или ANSI-люменах, когда измерения производятся в 9 точках экрана при специально установленных яркости и контрастности проектора и затем усредняются). Довольно часто фирмы-производители указывают значение освещенности экрана в люксах.

Значение освещенности (которое часто называют яркостью, понимая ее в бытовом смысле), в отличие от светового потока, зависит от размера экрана. Чем больше экран, тем меньше освещенность. Световой поток современных проекторов превышает 200 ANSI-люменов, что позволяет проводить презентации при обычном искусcтвенном или рассеянном дневном свете. Разрешение современных проекторов, как правило, VGA (640×480 точек), SVGA (800×600 точек) или XGA (1024×768 точек).

Для измерения освещенности используют специальные приборы люксметры. Так как для большинства пользователей проекторов такие приборы недоступны, мы предлагаем воспользоваться более доступным прибором: фотоэкспонометром или фотоаппаратом, снабженным экспонометром. Для определения необходимого светового потока проектора надо определить требуемую выдержку и диафрагму, направив экспонометр (или фотоаппарат с встроенным экспонометром) на лист белой бумаги в месте расположения экрана. Важно расположить бумагу в том же месте и под таким же углом, где и как будет располагаться экран, а экспонометр расположить таким образом, чтобы в его поле зрения попадал только лист белой бумаги. Далее по формуле вы определите минимальный световой поток для проектора (в ANSI-люменах) для заданной ширины экрана. Значение чувствительности должно быть в единицах ASA или ГОСТ (не DIN).

Световой поток = 40 х (1/выдержка) х (диафрагма) х (диафрагма) х (1/чувствительность) х (ширина экрана) х (ширина экрана). Например, если выдержка была 1/30 секунды, диафрагма 8, а чувствительность 200 единиц, то при ширине экрана 1.5 метра получим: Световой поток =40×30 × 8×8х (1/200) х 1.5 × 1.5 = 864 ANSI люмена.

Для удовлетворительного качества изображения достаточно светового потока проектора, примерно равного определенному по формуле. Для хорошего качества изображения желательно иметь проектор со световым потоком в два раза больше минимального, а для отличного в 4 раза и больше. Оптическая схема проекторов сделана так, что даже при горизонтальном положении проектора объектив находится не на уровне центра изображения, а примерно на уровне нижнего края изображения, то есть проектор светит немного вверх. В некоторых моделях предусмотрена возможность устранения искажений, возникающих при неблагоприятном расположении проектора. Современные проекторы годятся для использования в помещениях любого размера. Изображение может составлять и 20 метров по диагонали, и 1 метр. Расстояние проектор компьютер может быть любым.

В комплект проектора обычно входит кабель длиной 150-180 см, а используя специальные кабели и усилители-разветвители, это расстояние можно увеличить до 30 и более метров. Источник света в современных проекторах металлогалоидная лампа с очень большим сроком службы, а не стандартная галогенная лампа для оверхед-проекторов со сроком службы около 50 часов. Металлогалоидная лампа представляет собой единый блок из отражателя и самого источника света кварцевой трубочки, нить накаливания отсутствует. Срок службы такой лампы величина условная, так как лампа не перегорает вообще, а постепенно темнеет. Как правило, время работы такой лампы составляет 2000 часов. Для большинства пользователей это означает, что срок службы лампы составит несколько лет, и проектор быстрее устареет морально, чем потемнеет лампа.

Проекторы снабжены пультами дистанционного управления, с помощью которых на расстоянии можно переключать входы проектора (компьютер/видео), отрегулировать громкость звука, настроить яркость, разрешение, а в некоторых моделях и переместить изображение по вертикали, изменить его размер, настроить фокус. Имеются модели с пультом управления, совмещенным с дистанционной мышью (для управления компьютером на расстоянии) и даже лазерной указкой. Как правило, пульт ДУ имеет подсветку, что весьма удобно. В последнее время появились проекторы, имеющие возможность управления от компьютера. Для этого проектор подключается к компьютеру посредством интерфейса RS-232, и через компьютер можно передавать все управляющие команды. Особенно это удобно, когда имеется система компьютерного контроля помещения.

Оптимальное размещение проектора и экрана

Оптимизация расположения положения проектора и экрана не менее важна, чем правильный выбор проектора. И хотя исчерпывающую консультацию по размещению оборудования можно получить у специалистов, полезно представлять основные правила, которые следует соблюдать. Данную задачу можно разбить на три этапа.

1. Определение размера экрана.

Размер экрана можно определить из двух простых правил:

  • Расстояние от экрана до самого дальнего зрителя не должно быть больше б ширин экрана;
  • Расстояние от экрана до самого ближнего зрителя не должно быть меньше удвоенной высоты экрана.Можно подобрать экран из выпускающихся стандартно, а также можно заказать экран нестандартного размера.

2. Определение расположения экрана.

Экран должен располагаться так, чтобы был виден всем зрителям. Чаще всего для этого нижний край экрана должен располагаться на высоте 1-1.5 метра от пола. Поднимать экран выше также нежелательно, так как в этом случае просмотр для зрителей будет утомительным.

3. Определение места расположения проектора.

При стационарном расположении проектора, а также на выставках, чаще всего удобнее располагать проектор вверх ножками на уровне примерно верхнего края экрана. Лучше всего, если зона максимальной яркости, которая определяется из принципа «угол падения равен углу отражения», находится в зоне зрителей. Особенно это важно при использовании так называемых экранов с усилением, которые концентрируют излучение как раз в зоне максимальной яркости. Если же зона максимальной яркости окажется выше или ниже зоны расположения зрителей, то визуальная яркость изображения может упасть в несколько раз.

Иногда ситуацию можно улучшить, если наклонить экран и опустить проектор. Однако если используется обычный диффузный экран без усиления, который рассеивает излучение равномерно во все стороны, то данная оптимизация теряет особый смысл и положение проектора не критично. Также всегда следует стремиться к тому, чтобы изображение на экране было прямоугольным, так как в противном случае зрители будут ощущать дискомфорт от искаженного изображения. Повышает контрастность и снижает требования к настройке черная рамка вокруг экрана, знакомая всем по кинотеатрам.

Сегодня находят широкое применение в домах и различных организациях проекторы, устройства вывода информации используют для трансляции изображения на специальное полотно, применяемое в качестве экрана. Благодаря этому проецируемая картинка получается большой и приятной для глаза. По качеству изображения они немногим уступают телевизорам. Рынок сейчас наводнен проекторами на любой вкус. При выборе такой электроники нужно точно знать, какие задачи будут ставиться перед аппаратом. Ведь современные модели отличаются друг от друга не только классом и областью применения, но технологиями вывода картинки. Информация об устройстве проекторов и их работе может помочь в выборе.

Виды проекторов

Чаще всего, когда мы слышим о проекторах, представляем гаджет, который установлен в определенном месте. Такой тип устройства вывода информации на вертикальную плоскость очень востребован, хотя он отнюдь не единственный. Стационарные аппараты, как правило, оснащены максимально, поскольку производители не ограничены размерами корпуса. Их сложно брать с собой, зато пользователь получает мощную техническую начинку. Имеется и портативный тип устройства, проекторы эти легко переносить для проведения презентаций в разных местах. В них неплохие характеристики сочетаются с компактностью. Функциональный набор также здесь на хорошем уровне.

Но производители на этом не останавливаются, стараясь сделать размеры аппаратов еще меньше. Результатом чего стало появление девайсов карманного формата и проекторов для мобильных устройств с наименьшими габаритами. Вес первых не превышает отметку в 300 граммов. Для тех, кто находится в движении, модель, умещающаяся в кармане, - это настоящая находка. Однако для обеспечения высокой портативности техническую составляющую немного урезают. Наименьшие модели способны подключаться к смартфонам, что позволяет выводить изображение с экрана телефона. Их отличает легкость и удобство в эксплуатации, однако полезные функции в них сильно ограничены.

Области применения

Также проекторы классифицируются на офисные и домашние. Аппараты для дома выводят широкоформатную картинку с высокой контрастностью и реалистичностью, а также обладают качественным звуком, за счет чего можно с удовольствием смотреть фильмы, способные полностью погрузить зрителя в гущу событий. Размер светового потока в таком случае имеет второстепенное значение. Что касается гаджетов для работы в условиях офиса, то они более универсальны.

Чем отличаются домашние проекторы от офисных?

Домашние проекторы отличаются от офисных по некоторым параметрам, из которых стоит выделить следующее:

  • формат экрана;
  • разъемы и их назначение;
  • производительность;
  • вес корпуса;
  • цветопередача;
  • уровень шума и ресурс лампы;
  • встроенные динамики.

Устройство и принцип действия

Устройство проекторов в большинстве своем отличается мало. Технический арсенал мультимедийного аппарата состоит из оптической системы, модулятора изображения, лампы, систем очистки и охлаждения, а также электронной начинки. Световой прибор, коим, по сути, является проектор, перенаправляет свет от лампы с концентрированным потоком на необходимую плоскость. Это довольно сложные по содержанию устройства, условно разделяющиеся на две категории. В первую входят модели с CRT-технологией получения изображения, оборудованные электронно-лучевыми трубками в количестве трех штук, а во вторую - девайсы DLP, LCD и LCoS, работающие с помощью фиксированной матричной структуры. Последние пользуются большей популярностью, так как обеспечивают более высокое качество. В устройство мультимедийных проекторов, как правило, входят ZOOM-объективы, благодаря им размер изображения меняется без необходимости перемещать сам аппарат. В некоторых моделях фокусное расстояние изменяется с помощью пульта управления, а в других - регулировкой объектива вручную. Последний способ не так удобен, но производит настройку более точно.

В большинстве случаев применяются металлогалогенные лампы, способные испускать больше светового потока, чем галогенные с аналогичной мощностью. Но к концу срока службы их эффективность снижается вдвое. Также используются в устройстве проекторов лампы проекционного типа с низким энергопотреблением и высоким потоком света, они отличаются более естественным спектром. В современных проекторах устанавливаются очень долговечные источники света, ресурс которых может варьироваться от 1000 до 4000 часов. Чтобы своевременно произвести замену данного элемента, в каждом аппарате предусмотрен счетчик.

Оптика отвечает за перенаправление света к дисплейной панели. В нее входят такие компоненты, как зеркала, призмы и линзы для проекции. Модуляторы изображения отвечают за уровень яркости, разрешение и быстродействие, сегодня используются системы DLP, LCD, LCoS и CRT, о них подробно будет рассказано далее. Немаловажная роль в устройстве проектора принадлежит охлаждению, вентилятор очень важен для нормализации температуры лампы и электронных плат. Чтобы взаимодействовать с источниками имеют на корпусе необходимые разъемы - VGA, DVI, HDMI и прочие. Многие модели оснащаются также USB-портом и поддержкой Wi-Fi.

DLP-проекторы

В таких аппаратах роль ядра выполняет специальная матрица, формирующая изображение. Каждое зеркало легко реагирует на поступающий сигнал поворотом на малый угол. Благодаря этому создаются пиксели изображения. Устройство DLP проекторов позволяет им выводить картинку с высокой контрастностью и с более детализированными тенями, что является главным преимуществом технологии. Модели, оборудованные подобной системой, показывают себя с лучшей стороны по части долговечности и надежности, особенно в сравнении с устройствами прошлого поколения. Минусом можно назвать высокую стоимость проекторов такого типа.

LCD-системы

В большинстве ситуаций используются аппараты, снабженные тройкой жидкокристаллических матриц синего, зеленого и красного цветов. Мощный поток света, исходящий из лампы, пробивается сквозь них. Таким образом возникает изображение, выводимое на экран. Данная технология имеет массу достоинств, к их числу можно отнести легкость конструкции и простоту эксплуатации отдельных компонентов. Проекторы LCD создают качественную картинку, характеризующуюся реалистичностью, насыщенностью цветовой гаммы и стабильностью. Но владельцы подобных девайсов могут столкнуться и с недостатками, в некоторых экземплярах встречается неприятный визуальный эффект, напоминающий проволочную сетку.

Проекторы с технологией LCoS

Этот тип проекторов появился не так давно. К сильным сторонам данной технологии, прежде всего, относится высокая четкость без эффекта «сетки». Прочие особенности также заслуживают внимания. Базируются такие аппараты на матрице LCoS, представляющей собой жидкие кристаллы на кремнии. По распространенности эта технология уступает LCD и DLP. Но за счет уникальных особенностей она имеет хорошие перспективы. За счет применения кристаллов LCoS получается изображение по отражательному принципу, а не просветному, как это можно видеть в аппаратах LCD. Отражающая матрица откликается на воздействие быстрее, в три раза превосходя по скорости просветную технологию. К тому же конструктивные особенности панелей LCoS позволяют эффективней использовать поверхность кристаллов, что дает возможность наращивать количество пикселей без необходимости увеличения панели. А это напрямую влияет на качество картинки. Устройство проекторов LCoS не очень сложное, а значит, в производстве они дешевле, так как отсутствуют механические элементы.

CRT-проекторы

Эта технология является пионером в области создания проекторов. Первый экземпляр с данной системой вывода изображения появился еще в далеком 1970 году. Такие аппараты базируются на трех электронно-лучевых трубках, имеющих красный, зеленый и синий светофильтры. Они отвечают за формирование светового потока, проходящего через фокусирующие линзы, он попадает на экран в виде полноцветной картинки. Сегодня устройства CRT встречаются все реже, уступая дорогу более современным аналогам. Пик популярности этой технологии остался позади. Однако она превосходит более новые технологии по многим параметрам, а именно по цветопередаче, разрешению, сроку службы лампы и акустическому шуму. Ее слабые стороны - сложность настройки и громоздкость моделей, где она используется. К тому же она отличается низким уровнем яркости, поэтому для просмотра необходимо отключать освещение.

Плюсы и минусы проекторов

Проекторы предлагают большую диагональ экрана, что является весомым аргументом в пользу покупки данного устройства. Можно довести информацию до большего количества людей. Все зависит лишь от предпочтений и размера помещения. Чем больше изображение, тем ярче впечатления. Если на мониторе могут быть черные полосы из-за разных форматов видео, то с проектором таких проблем не будет. В нем легко настроить экран под любой формат. В устройство цифровых проекторов нередко включают поддержку 3D-картинки без потери качества. Если создать подходящую обстановку, затемнив помещение, можно получить изображение лучше, нежели в LED-мониторе.

Недостатки тоже имеются. Самый дорогой элемент проектора - это лампа, и она приходит в негодность примерно раз в 4 года. Ее замена повлечет за собой немалые финансовые затраты. Проектор из-за активного охлаждения лампы ощутимо шумит. При просмотре видео или слайд-шоу приходится терпеть звук работающих вентиляторов.

Критерии выбора

Существует немало моментов, на которые стоит обращать внимание при поиске подходящего проектора, устройство вывода изображения всегда нуждается в хорошем уровне яркости. Хотя на этот показатель большое влияние имеют условия эксплуатации, хорошо если есть выбор режимов, зачастую их три - «Презентация», «Фильм» и «Динамический». К насыщенности цветом также стоит присмотреться. Трехматричные проекторы выдают более естественное изображение, превосходя в этом отношении одноматричные аппараты. Смотреть нужно и на уровень контрастности. Особенно данный параметр важен, если необходим домашний кинотеатр. Последним, но не менее важным моментом является разрешение картинки, что сказывается на четкости картинки.

Вывод

Современные проекторы - это довольно сложные устройства, однако в то же время они могут стать незаменимой вещью как в сфере бизнеса, так и для использования в домашних условиях. Они способны подарить зрителям яркие эмоции от просмотра благодаря качествам, которых нет у телевизоров или мониторов. Главное - подходить к выбору с умом.

Проектор – сложный механизм с целой системой электронных плат, световых элементов и линз

Вопрос о том, как устроен проектор, должен волновать каждого, кто является владельцем подобного устройства или регулярно сталкивается с ним. Зная основные принципы работы такой техники, можно успешно осуществлять уход за ними и производить грамотную их настройку. Вне зависимости от принципа работы проекционного устройства и технологий, используемых в нем, базовое устройство не меняется. Появляются лишь дополнительные линзы, отражающие поверхности, процессоры и т.д. Можно выделить две основных составляющих проектора.

Видео

Видеоролик взят из интернета по этой теме для того, чтобы вам было проще разобраться в деталях.

Первая – это непосредственно лампа. При этом устройство проектора не обуславливает тип используемого светового элемента: разрядная лампа с одним цоколем или с двумя контактами. Разница этих ламп лишь в сроке службы, который измеряется в часах непрерывной работы и способе подключения. Ну а сам проектор целиком включает в себя:

  • плату для обработки аудио и видео,
  • лампу,
  • светомодуляторную плату,
  • рассеиватель,
  • корпус.

Устройство лампы для проектора

Так выглядит стандартная лампа для проектора

Выбор лучшего проектора зависит прежде всего от его назначения.

Особенности проекторов для дома

Проекторы для домашнего кинотеатра должны уметь качественно выводить динамические сцены (такие, как фильмы, видеоролики, спортивные передачи) и обеспечивать одинаково хороший результат для разных источников или стандартов сигнала. К сожалению, реализация перечисленных возможностей стоит немалых денег, а для моделей с «натуральным» разрешением в 4K — так и вовсе неадекватных.

Неудивительно, что производители изыскивают различные хитрые способы получения высокой четкости картинки без использования дорогих полноценных чипов 4K. У компании JVC соответствующая технология называется «e-Shift», у Epson это «4K Enhancement», у Texas Instruments — «XPR» (проекторы Optoma). В принципе, все они реализуют идею оптического сдвига полукадров с последующим наложением, просто каждая по-своему. Кстати, польза от такого псевдо-4K есть и при просмотре менее четкого контента. Та же пиксельная сетка (москитная) растворяется почти полностью. Правда, за счет некоторой потери резкости.

Специфическим требованием к домашним проекторам может быть минимальное время задержки — для геймеров этот параметр крайне важен. Видео в формате 3D сейчас способно демонстрировать подавляющее большинство моделей. Единственное, что, для получения в домашнем кинотеатре полноценного объемного звука , придется докупить акустическую систему соответствующего уровня.

Особенности проекторов для работы и учебы

Образовательные цели и потребности бизнеса подразумевают работу со статичными картинками. Следовательно, проекторы для офисов и учебных аудиторий чаще всего легко обойдутся без сложных подсистем аппаратно-программного интерполирования и масштабирования, управления цветом и других дорогостоящих фишек. Их матрицы ориентированы на «компьютерные» разрешения, а «киношные» выводят со значительным усечением используемой площади. Понятно, что последнее сказывается на четкости полученного изображения не лучшим образом. Без продвинутой функциональности в этой группе также не обошлось, но она принимает специфические формы. Например, поддержку интерактивных режимов работы.

Общие характеристики

Основным интерфейсом подключения проекторов является HDMI , а многие модели оснащаются и парочкой таких разъемов. Если источников сигнала у вас несколько — лишними они точно не окажутся.

Практически все проекторы научились взаимодействовать со смартфонами и другими устройствами по протоколу MHL. Для удобного подключения портативной техники у них часто предусматриваются порты USB . Здесь полезным функционалом можно считать способность через данный разъем попутно заряжать мобильные гаджеты. Следует иметь в виду, что наличие интерфейса USB еще не означает возможности работы с флешками. Подобные «плюшки» полагаются только проекторам со встроенным медиаплеером. Причем, чем последний «умнее», чем больше форматов видео получится воспроизвести в автономном режиме.

В зависимости от предполагаемого расстояния до экрана, проекторы следует выбирать и по «длине» фокуса . Самые короткофокусные модели способны формировать изображение с большой диагональю, находясь буквально в сантиметрах от стены, полотна или доски. С другой стороны, такие аппараты (как правило) не подойдут для проецирования издали. Наконец, яркость получаемой картинки зависит от целого ряда факторов, основными среди которых можно считать расстояние до экрана, мощность излучаемого светового потока и уровень освещенности помещения. Для большинства проекторов для домашнего кинотеатра и частично затененных комнат вполне достаточно потока в 1500—2000 лм.

Вашему вниманию представлена подборка очень достойных и популярных моделей разного назначения в категории недорогих и средних по цене проекторов, заслуживших в 2018 году хорошие отзывы от покупателей и от экспертов. Полностью универсальных решений здесь быть не может, поэтому выбирать лучший проектор для офиса или же для домашнего кинотеатра следует исходя из круга решаемых задач, а также предполагаемых условий его эксплуатации.

Поделиться